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Abasatract
A high-order correlation tensor formalism for neural networks is described. The model can
simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoas-
sociative rnodel, simulation resvits show a drastic increase in the memory capacity and wpeed
over that of the standard Hopfield-likr correlation mi.rix methods. The possibility of vsing

multiassociative memory for a learning universal inference aetwork is also discussed,



1. Introduction

Since World War II, scicntists have tried to develop techniques which would allow computers to
behave more like human beings. The research effort, which usually goes by the fanciful name of
“Artificial Intellig2nce”, typically involves abstract problem solving, decision making, pla-ning,
machine learning, and natural language understanding. Essential to most Al research efforts is
the heuvy reliance of high level symbolic manupulation tools which tavor serial computation. In
fact, it is probably fair to say that the majority of the AI researchers believe that since most high
level information processing taking place in our brains are of the “serial terminating search” type,
it wculd be quite unnecessary to resort to massive parallelism to duplicate human intelligence.
This should not be construed to mean that Al workers do not believe that parallel computing
can play a role in the implementation of Al techniques in hardware. On the coutrary, most
computer scientists in Al research will readily acknowledge that parallel computing can solve
the bottlenecks associated with many kinds of recognition and pattern matching problems tkat
occur in Al. However, the consensus is that when it comes ‘o knowledge processing, parallelism
is a poor substitute for sequential heuristic search. The major drawbacks in the traditional
Al methodology are their extreme brittleness and the enormous amcunt of menpower usually
required. To wit, even tlie most complex and the most sophisticated piece of Al software which is
capable of performing impressive tasks in its specialized domain will “crash” as soon as it is taken
Leyond the scope originally contemplated by its designers. On the other hand, most four-year
old children can cope with strange or unexpected situations, without having been programmed
Ly an entire army of Al designers!

A drastically differeat approach to machine intelligence has been attemnpted by neural mod-
clers who believe that massive parallelism, distributed information storage and associative inter-
connections, as suggested from biological evidence, should be the base upon which to construct
intelligent devices. With the big advances in fast microchip technology, such a connectionist
approach has been gaining support among noncomputer-scientists. It can be argued, however,
that while certain neural models can indeed perform relatively 'ow level cognitive funclions like
pattern recognitions and associative memory admirably well, no higher level functioni such as
planning, decisi.'n inaking, and understanding semantics have becn successively demonstrated by
this approach. Nevertheless, the idea ren ains an attractive one. eapecially from the point of view
of nonlinear dynamical systermns. lmagine the complex interaction of a huge number of neuron-like
processors passing signals to one another. It is not hard to believe that the system wi.l, except
in extrrme situations, evolve in a most unpredictable way, That this must be so can be inferred
from the by row well-established fact that even in a much simpler nonlinear dynamical system of
much lower dimensionality there can be sensitivity to both the initial state and the parametric
dependence in the most extreme manner; so much so that this dynamical syatom can be uaid to
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behave in an unpredictable fashion. Note that typically Al researchers try to design systems in an
algorithmic manner so that the software so produced can usually be proven to perforin exactly as
prescribed. Any degrec of unpredictability that infrequently shows up in the program is usually
considered to be a case of malfunctioning and accordingly are treated with great disdain. Indeed,
the point of view of wanting the system to perform useful intelligent functions seems incompatible
with unpredictability. Yet the behavior of 2 human being is not exactly predictable either. Still
we can count on another human being to perform certain tasks for us. Hence with certain limits,
unpredictability does not necessarily mean unreliable performance. In fact, our own free will can
be traced back to the unpredictability of our mind. This by no means implies that the free will
of the human being can be simulated by merely introducing a large dose of randomness externaly
into the system, just as we cannot argue that the turbulent ocean waves have any more “free
will” than that of the human being simply because they are more unpredictable.

The main characteristic difference between the thought process of the human brain and the
motion of the turbulent ocean seems to come from the ability of the human brain to store,
process, and retrieve information. Try to feed information to the ocean waves and it is quickly
lost. Many physical systems driven far from thermal equilibrium also display memory eflects.
However, thcse tend to be of very short time scale so they are more akin to the short term
memory phenomenon of the human brain than the long term memory one, the latter being of
much greater importance tc higher level intelligence of humans. One physical system capable
of long term memory is the Ising spin glass model, its relationship to the influential model of
Hopfield having already been pointed out by numerous authors [1]. Another spin-glass-like model
with nonMarkovian spin-spin interaction functions has been demonstrated by Fukushima [1a] to
be capable of spatio-temporal associative memory. The information in both cases can be stored by
modifying the nonlocal spin-spin interaction strength (to model the neuronal synaptic strength)
according ‘o Ilebbian rules which, in effect, “lcarn” patterns by performing weighted summation
of exterior products of pattern vcciors. The latter zan be shown to be the binary correlation
functions of the pattern vectors in the statistical inechanical sense. The major drawback of the
binary correlation function models can be seen from the fact that if we desire spatial translational
invariance (temporal translational invariance is autornatic, absolute ti.ne simply has no meanirg),
then the binary correlation functions are simply the Fourier transform of the power apectrum.
Ilence all information about, the angular dependence of the individual Fourier component of the
pattern vectors s totally lost. The lack of angular dependence severely limits the capability
of such systems to perforin pattern discrimination tasks. In fact, the memory capacity of the
Hopficld model is extremely low, being of the order of w/4logn in most cases, where 1 is the total
number of neurons.

The preceding discussion is mostly pertinent to the so called “autoassociative memory™ mod-
elling [1]. In the heteroassociative case [1], the research is usally dirccted toward classification
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of patterns according to their membership in respective equivalence classes. Here the applica-
tion of Hebbian learning rules leads to the “correlation matrix” method [1,2]. Unfortunately the
correlation matrix can only store the “average” pattern vector of any giver equivaleiice class. It
certainly will not learn the equivalence class of, say, your grandmolher, because the “average” of
grandma’s pattern vector can only be a big blurr, quite indistinguishable from that of your pet
octopus, for example.

In this paper, we propose to improve the memory capacity as well as to enhance the pat-
tern discriminating capabilily of the neural system by the introduction of higher order tensorial
memory functions (correlations). In sc doing, we depart significantly from the Hebkian doctrine.
Since there does not seem to be any neurophysiological evidence to support the assumption that
the synaptic connections are higher order in nature, we will focus our attention on whether such a
system can display intelligent behavior. The possibility of implementing higher order correlation
by using hidden neurons wi!l be discussed in a separate paper. ‘We consider neural models which
are capable of spatial as well as spatio-temporal associative rnemory. kor the spatial memory
problems, the memory pattern vectors are stured in the form of stable fixed points of neural
dynamics, each with a large basin of attraction. A large basin of attraction means that even
relatively noisy or incoruplete information can be used to evoke the full memory. The memory
recall process consists of evolving the neural s»stem in discrete time steps from the starting state
which corresponds to the incomplcte pattern informa.ion vector until it converges to a fixed point.

One of the most striking aspects oi the higher order correlation models is that even when
relatively large sets of patterns are stored, it usually takes no moie than one discrete time step
for the initial vector to converge to the proper fixed point, thus making the high order scheme
very altractive from the point of view of computing efficiency. For the spatio-temporal models,
a multi-assc-iative neural network is used together with a shifting operator. Since the pattern
vectors are now functions of the time, it is no longer possible to use the time axis for error
correcting iterations. Fortunately, because of the excellent convergent properties of the higher
order scheme, it is possible to introduce a very small number of interniediate time steps (two or
three are usually cnough) to alluw each pattern vector to iterate several times before the next
pattern vector comes in. For the more realistic situation where the successive pattern vectors stay
cluse to one another, additional iteration stens can be gained because the basins of attraction of
the individual points of the attracting orbit tend to merge togetl.er, forming a single basin, thus
allowing the state vector ‘o converge toward the attracting orbit adiabatically. Multiassociative
mernory can also be used as both a spatial and a spatio-temporal pattern classifier. The latter
clearly has ity application in speech recognition.

The multiple attractor model us described basically implements the “learning from positive ex-
ainples” paradigm. However, perhaps just as important in the “learning from negative examples”
paradigi:, which can be implemented by inserting repellers that correspond to negative example
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pattern vectors into the neural dynamics. Note that the introduction of repellers is very different
from the “unlearning negative example” paradigm, which simply corresponds to the eradication
of a previously learned pattern attractor but doe nothing to prevent the same mistake from being
made in the future. Weak repellers can also be employed to perform minor surgery (sculpting) of
the basins of attractions without affecting the basins of neighboring attractors [3].

The learning paradigms enc untered so far can be broadly categorized as “rote™ learning, or
learning by memorization. In fact, with few exceptions, most of the neurai network reserach to
date can be said to belong to this general category. The main drawback of this approach is that,
while it is possible in theory for the system to memorize all possible situations that the system 1s
likely to encounter and the appropriate responses therein, it would require a tremendous a:nount
of memory storage and the computing power. For example, in the case of learning chess-playing
kill, it simply does not make any sense to try to memorize the responses to every possible
move that the opponent is likely to throw at you! Nor, in pattern recognition problems, is it
rcasonable to store every conceivable profile of your grandma’s face! The predominant view in
the AT community on these matters is that the difficulties associated with information storage and
processing can be solved by using information compression methods utilizing fzature detectors,
thus rerdering it poszible to process the reduced information on a higher level using symbolic
processing tachniques.

The protlem with the Al approach is that the selection of fcatures for detection, the actual iin-
plementation of feature extraction, and the heuristic rules for symbolic proccssing of the abatract
.eatures all have to be programmed explicitly, a monumental task. For example, even though
we've all learned to recognize our own grandma's face, it is hard to determine exactly what set of
fcature detectors we use in our brains to enable us to make the proper identitication. The point
is that the processing associated with foature detection are all done at very low levels, below our
conscious level. Decause of our inability to recognize our own feature-detecting subaystems, it is
very difficult to transfer our own experience into the design of proper software and/or hardware
tools to implement the feature-space paradigm. In our attempt to overcome these obstacles, we
propose the fullowing alternative: instead of trying to find out how to detect salient features,
we can simply overload the neural network with patterns well beyond the capacity of the neural
system to atore them without causing eevere mutual interference. Simpie arguments borrowed
froin statisticai mechanics can be used to convinece us that what actually gets stored in the neural
dynamics wre no longer the individual patterns since these tend to get washed away through
mutual destructive interference of input pattern vectors, and all that remains is, in some sense,
certain representations of the statistical or causal invariants of the ever-changing environment,
much in the same way the nholograma are corstructad.

The preceding remark should not be taken to mean that our approach is heiographical in
nature. Far from it, our proposal does not require treating the neural network as a optical-grade
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media, nor is there any need to introduce coherent wavefronts. About the only thing in common
between these two approaches is the point we just mentioned. in our higher-order correlation
model, the statistical/causal invariants are encoded into the higher-order spatio-temporal corre-
lation connections diractly. It is clcar that since binary correlation models can only learn binary
correlations, by definition they have about as little predictive ability as that of the binzry cor-
relation functions of fully developed fluid turbulence, once the memory is overloaded. It is also
clear that, ihe higher the order of the interconnections, the more complex are the correlations
the network can learn. The ultimate limitation nf this approach is in hardware implementation,
which gencrally favors lower order interconnection.

The saturation learning paradigm just presented affords a tremendous compression of infor-
mation content because it eliminates the bulk of redurndant noninformation which does not have
any causal consequence and is therefore devoid of any contextual meaning. Note alsn that because
of the nature of the correlation functions in a highly varying environment, signal patterns tend to
get fused into localized (both spatially and temporally) chunks and are stored as such. The so-
herent spatio-temporal information chunks are in many ‘vays reminiscent of the soliton structures
in nonlinear continuum systems. Furthermore, since there are interconnections (or nsnlinear cou-
pling coefficients), it follows that the neural rctwork will behave like a multi-adaptive filter which
is sensitized to incoming signals containing only those information chunks. In fact, with proper
thresholding, it is pocsibie for the neurai petwork to allow only those signals having the proper
chunks to pass through for furil.er processing. Obviously the threshold behavior itseif must also
be adaptive. For example, a threshold can be lowered by just “paying »ttention”. Otherwise no
new information will be learned. Oftan, though, new information can be just a new combination
of alrcady chunked infor.nation. Thus we can identify the localized invariant spatio-irinporal
chunks to be the output of some sort of local feature detectors (filters).

The concept can be generalized even further. For example, let us assume that tliere is anothcr
layer of slower neural network whih monitors the highly thresholded output from the first layer
(»ue adaptive feature-detecting filter layer) so that only the strongly resonant filtered feature
chunks can get through to the second neural layer. Then the feature chunks now become the
smallest irreducible information units for the input signals of the sccend layer. By analogy, the
intercorrelation among various feature units can be further integrated into higher level chunks,
thus lcading to a even higher level representation of the knowledge. In fact the relationships (both
spatial and causal) among diffcrent featire unita can be reasonably called rules. In consequence,
a two-level neural network systemn can be said to be capable of learning rules. The reason for
using a slower (longer time constant) neural network for the second layer is that since the spatio-
temporal correlations of the feature units are by definition weaker but may have much longer
spatio-temporal range, therefore, only an accumulator with sufliciently long time constant can
pick up such weak correlations, The situntion is very similar to that in particle physics where very
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strong correlation generaied by the strong force leads to highly localized chunks known as nuclei;
the weaker electromagnetic force leads to much longer range but weaker correlations; and the far
weaker gravitational force in turn leads to tiny but eairemely long-range correlations which can
be detected only by integrating (averaging) over macroscopic space-time volume.

Once the network system can be taught rules, it becomes capable of recognizing pattern
classes instead of just the individual patterns. This gives the system strong immunity to noisy
environment as well as great flexibility. Thic ability to synthesize rules also makes it possible to
design networks which can perform neural programming of almost arbitrary complexity.

2. Fundamental network dynamics

Neural networks are often modeled by approximating neurons by threshold elements. The neurons
interact with one another through an interconnection matrix which simulates neuronal svnartic
connections. Learning can be achieved through Hebbian-like modification of the interconnection
matrix [1,2], which has the effect of either creating new attractors or changing the 1 -ations of
existing attractors so that the system can produce appropriate responses to a set of external
stimuli. More generally, a neural network can Le considered to be a nonlinear dynamical system
with a larg: number of degrees of freedom together with a large set of adjustable parameters
which in turn are controlled by other nonlinear dynamical equations with very long characteristic
time constants, Of course, the importance of interaction between two time scales has long bee:
recognized in physics. Yet none of these physical systems display any behavior which could be
characterized as being “intelligence”. Clearly, there is more to an intelligent systemr than just
twn-timescale interactions. To simulate synaptic plasticity, the long-time subsystem will have to
behave in some way like ai accumulator. The requirement of large memory capacity seems to
dictate the existence of a large numbor of attractors with nontrivial basins for the short time
subsystem. It is not obvious whether or not any sufficiently complicated system having the
above meriioned properties car display some sort of recognizable “intelligent” behuvior, even if
“intelligence” is interpreted in the loosest sensec.

The particular model we consider is heavily influenced by a recent article by Hopfield [1].
The main difference being that the interconnection in our model is of tensoriai character, rather
than the matrix-type interconnection of the Hopfield model. Specifically, we deline a Lyapunov
(energy) function

N N N
E=)Y 3 Y TirnSe,Sus Sy (1)

vi s vs
where § < (5,5, -Sxy) is u state vector whose components, 5;,7 = 1,---N, can only assume the
values of 1 or -1, and k specifies the order of the interconnections. The dynamical evolution of

the fast subsystem is governed by the following discrete map:

.'1'.-("' Y W[ X: T(n) q(ll)S.(':l) L SI":)] (2)
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where W (z) is a step function whose value is 1 whenever z > 0 and -1 otherwise, and S/ is just
the ith component of the neuron “spin” at the nth discrete time step. The n.odifiable synap.uc

interconnection tensor T{).,, satisfies the following long time evolution dynamics:

ViV T

Té:-+52 =(1- a)Ti:') e+ 0 Z D ms(n)s‘(‘n) s‘(‘:) (3)
[ 2

where DV} 'L} is a positive definite matrix which has the property that all permutations of {u;---ux}
and {v; ---} leave it unchanged. Hence it follows that 7{"),, is also a symmetrix tensor provided
that 7{%.,, is initially symmetric. a~! in eq. (3) is of the order of the characteristic time scale for
long term memory. For very small values of a, T{").,, can be consicered to be essentially constant
ir time (namely it is independent of n). Thus eq. (2) can be treated as a nonlinear discrete map
with constant coefficients, 7,,..... As a special case, we can take 7,,,..,, to be of the form

T, v.—aZ AR (4)
=lpy -
where ¢ = (¢{7, eif)...¢{F)) is a pattern vector which corresponds to the Pth input pattern
and m is the total number of patterns stored in T,,..,,. Here again, we assume that ¢'”) can
have valuves of +1. With suitable choice of the D tensor, it can be demonstrated that eq. (2) has
more than m attractors. Indeed, if we consider the simplest case of D == 1, the energy function E
becomes (see eq. (1)),

2.,.: " .8 (5)

For sufficiently large values of k, E has very sharp maxima whenever S is close to one of the
pattern vectors, ¢!"), provided that m is of ihe order of N*~!/tnN or less [4], where N is the total
number of neurons. (Note that S8 = ¢ . ¢/7) = N).

A very interesting property concerning the discrete dynamical eq. (2) for D = 1 ard k=even
is that the energy function defined in ea. (5) is a nondecreasing function of time. To prove this,

we note that ot

AE=E(S + AS) - E(5)

N (8)
=k ). Ty 0nSey Sy, BS,, + R

where
u“L'LL( )5 (e s d

From eq. (2) and the definition of the W-function, it follows that

AS: L Liv, a8y - Sy 2 0. (3)
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The equality holds only for AS; = 0. From (8) we can see that the first term on the right hand
side of eq. (6) must be nonnegative. It turns out that R can also be shown to be nonnegative.
To show this, all we need to demonstrate is that the function,

2q

flE S (M) = (1 2 - (1 200 ©)

=3
is nonnegative. Using the method of matnematical induction, we first establish that f,(z) = <% > 0.
Now assume that f,(z) > 0 for all integers ¢ < 7, we will demonstrate that f;,,(z) is also nonnegative.
In fact, we can show that

Jori(z) = fo(2) = (1+ )22 — (14 2) — [1 + (27 + 2)z] + 1 + 242

= {1+ 22 - 1|1+ 2)2 — 1) + 27 (10)

2[(1+2)" - 1]l(1+2)? - 1] 20,

where we have made use of the fact that (y? — 1)(y - 1) > 0 for all nonnegative values of y. Q.E.D.
.- Although the nondecreasing property of E has been shown only for the case D = 1 and k=even,
it'is 1.0t hard to generalize to cases when the D’s are positive definite matrices. Dynamically, this
implies that the discrete dynamics governed by eqs. (2) and (5) zdmits only stable fixed point
attractors. This combined with the fact that E contains sharp maxima for S = ¢”) implies that the
pattern vectors ¢!” ) are indeed the stable attractors for the neural dynamics. It shouid be noted
that Hopficld first proved that both the asynchronous scheme and this scheme has the hill climbing
property for the binary correlation model [2]. Although it can be argued that an asynchronous
firing model is probably a more realistic representation for biological neural networks, it should
be pointed vut that the synchronous scheme has several advantages over the asynchronous one.
For example: (a) synchronous maps have the semi-group property in that the composition of two
synchronous maps is a synchronous map; this facilitates a group theoretical approach, (b) the
synchronous scheme is more amenable to parallel computation, (c) the deterministic nature of the
synchronous scheme makes the results easier to interpret (the basins of attractio.: can be uniquely
defined), (d) asynchronous maps can move the state at most one Hamming distance at a time,
whereas synchronous maps allow the state to jump more than one Hamming distance at each
discrete time step; thus it is harder for the synchronous maps to get stuck at a local maximum.
However, for odd order correlation models, the dynamics is no longer strictly hill climbing in
the synchronous scheme. In our research, both the synchronous and asynchronous schemes are
studied.
The advantages of using repellers to represent negative examples have already been stated in
the introduction. Naively, it would scem that a repeller can be created for pattern vectors _e‘“’
simply by changing the energy function (5) to

B YEn )t S ()

p—1 n=1
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since then ¢™ will be minima instead of maxima and therefore will be avoided in any hill climbing
algorithm. The trouble with (11) is that even for even order (k = 2g) correlation models, the
presence of negative weights invalidates the proof of the nondecreasing property for E. In fact
if we assume that S ~ ¢, then for sufficiently large k, E can be approximated by —(¢- S)*. The
discrete dynamic eq. (2) now becomes

sl_("'”) = W[—(¢ - 8™)*1£, + small remainder]. (12)

Clearly, for § = ¢, we find 'Y = —¢, which in turn means that §(*) = ¢,---etc. Thus it is found
that the introduciion of —(¢:S)* in E merely adds a 2-cycle attractor to the neural dynarnics, not
the repeller as one might have anticipated. This difficulty can be circumvented by modifying (11)
in the following way:

E= 36" 5 - YoIEN - 8+ e Ncg™ g, (13)

The corresponding dynamical equatior becomes

o w{i':(g‘” Sy _ iﬁ [(i(m) L SIMk=1 . N(gl™) . gln)jE-2)glm) } (14)
el m=1

Again let us assume that S ~ ¢ € {¢™)}. Equation (14) can be written as
S = w{-(¢-8™M)k=1g - N(§- 8™)*~7¢ + remainder}. (15)
This {ime, the time sequence of S becomes
S g8 = g, 5@ g g, et (16)

The reason that S'? is no longer near ¢ is that (¢-5')* * and N(¢ 5!")*-? exactly cancel each
other when $'!) = ¢, consequently the subsequent dynamics is no longer governed by =+¢.

The behavior just described provides a very interesting model for the conditioned avoidance-
escape respulise to negative stimulus, such as shock. If the subject inadvertently touches an
exposed hot wire and suddenly realizes it, the first rcaction is to take a step backward and then
hesitate before deciding to move in a path which does not intercept the exposed wire. Actually
we are getting a little bit ahead of ourselves in the above example, since we have not yel discussed
heteroassociative memory which 1s more appropriate for the above case; neither have we talked
about how to insert input into the neural network (the neural net defined by egs. (2) and (3) is
strictly autonomousi).

To address the problem of input, it is necessary to modify eq. (2) as follows:

LT R U
g2y iy
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where [(") is the input vector at the nth discrete time step and g is the gain control parameter;
i.e., if we set # =0, then the input signal is turned cff. The evolution of the state vector § when
the input is turned off can be compared with hallucination.

We can now understand how eq. (4) is derived. Assuming that m (the total number of input
time steps) is sufficiently small that (1 - o)™ is still very close to one, and that the first m input
signals are

l(n) = §(n) \n = 1,2,...m, (18)

then eq. (4) follows immediately from eqs. (3) and (18) provided that g =1 (the input channel is
open) during the learning period and that we are considering the dynamics of the system not long
after the learning period (i.e., m+tm > n > m,: << 1). Since the factor, (1-a), in eq. (3) represents
forgetting, the long term memory as described by eq. (3) essentially operates in a “first in, first
out” fashion. To ensure that a particular item (pattern vector) is retained in the memory bank,
it will have to be revisited from time to time. Also an item which has been frequently visited
will have a large weighting factor attached to it, which tends to give it a higher energy peak as
well as increasing the corresponding attractor basin. Again this seems to correlate well with the
behavior of long term memory in huruan.

As a nonlincar dynamical system, hnwever, there is always the danger that if the attractor
basin of a particular pattern vector becomes large enough to dominate the dynamics, then its
weight will grow even further, making it even more dominant. This will lead to a vicious cycle
with the end resu't that the attractor basin of this particular pattern vector will encompass the
entire ctate space. One way to avoid this catastrophe is to allow the weighting factor to saturate
at a value low enough that it cannot dominate the neural dynamics. There are several ways to
implement this. One is by introducing attentional feedback control to the learning dynamics (3),
namely

Tt = (1-a)T)u, +9a Y DELtesiY - i) (19)
. 2B RN T ]
where « is the a-ttentional feedback gain control (i.e., when ~ is iarger than one, the system can
be said to be “paying attention” which enhances learning speed, on the other hand, when ~ is less
than one, than the system is not “paying attentior”, and the rate of learning slows downj. The
problem is to find an attention controlier which is intelligent enough that it can automatically
reduce 4 to zero whenever a particular pattern vector begins to dominate the dynamics. One way
to do this is to use a so called “novelty filter”. However, this will be the topic of another article
and will not be discussed any further here.

A more direct way is to introduce nonlinear terms which can saturate the runaway instability.

One of the simplest ways to accomplish this is to consider tiie following learning equation
Tt = (1- )Ty +a Y DS .. s - e TiN) B2 4 6T, B2 20)

1
Byiah
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where
En= Y 2\, simst - st

vi s
is just the energy (Lyapunov) function defined in eq. (1) and evaluated at the nth discrete time
step; § and € are small parameters which have to be chcsen so that the nonlinearity is sufficiently
small that it does not slow down all learning and yet nct so small that it is unable¢ o arrest the
growth of a particular atiractor before it is too late. The reason for using E? instead of E, in (20)
s to allow repellers to be included in E,. ".he way the nonlinear saturation mcchanism works is
1s follows: whenever a particular pattern attractor beccmes large, then £2 hecomes very large
~hen S(") happeny to be in its neighborhood (namely, inside the attractor basir:). This has the
sffect of dramatically slowing down learning and preventing further growth of the attractor basin.
This can be seen by rewriting eq. (20) for the special case § =€ (1 - a):

Titt) = (1- a)Tiphu, +a(1+ € B3~ Y poipasin ... s(m, (21)

YR

Zquation (21) can be seer to be simply a special case of the attentional feedback learning (eq.
'19)) by identifying 4 with (1+ € E3)~!. in this respect, one might even generalize eq. (21) in
iuch a way that (1+ € E3)-! is replaced by a new function 4(E.) which goes to zero whenever E,
»ecomes too large, e.g., 7(E,) = (1- € E3)/(1+ € E?),

To incorporale repellers into the learning mechanism, we need to introduce a critic. This
.an either be an external teacher or a built-in internal monitor which ac's accoraing to some
nstablished set of rules. For example, we can have an internal probe which monitors the physical
-vell-being of the sysi»m. If any physical dainage has been detected, than a pain message will
"»e sent to the learning subsysteni. To sec how learning ru'es have to be changed, we take, for

rimplicity, Di = 1 end ignore the eaturation terms. Again a gain control parameter A is called for,
and eq. (3) is changed to

T (- )Ty 4 alf (A) — £ (A)IS5Y - sh
; " kN (22)
P'('I -’5: 1 == (l - ﬂ)”‘.‘.l.)..v._. - ﬂk' -_l f.. (A)SL(":' et Sl(,:'_)l
‘vhere
[1{A) >0 when A >0, f (A)>0when A <0
(29)
f4(A) = 0 when A <0, f.(A) =0 when A >0
''he energy function in this case becomen
. ko1 - ) \
"l L 1|| |.b||"- ..-. k }4 TR Y lh,,l-"s,,._“ (2‘)

[ LA LY 1 VA
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and the dynamical equation i» ~hanged to

S+ [pli("' + Y T ststmy 3 i) s ...s(n (25)

LT TR T Ma-1]"
L B Yy hh-1

Note that as soon as the repellers are introduced, the dynamics is no longer strictly of the hill
climbing type, even with g = 0. This allows the system to admit periodic attractors in addition to
fixed point attra :tors. Aperiodic attractors of course are not possible since there are only a finite
numbe. of distinct states, 2¥ to be exact. However, as long a3 k is sufficiently large, any pattern
vector with sufficient weight is still a stable fixed point because for S ~ ¢, E is still dominated by
(€ 9"

So far we have mostly specialized to the case 75 = 1. In terms of hardware implementation,
this requires, in additior to the N primary processors, an additional (}) « N* secondary processors
with attendent interconnections to all primary processors. Even for a moderate k value of 4, and
a small number (N ~ 10%) of primary processors, we need about 107 serondary processors and a
like number of interconnections, a true hardware nightmare! A drastic reduction of the number
of interconnections as well secondary processors can be achieved by choasing D to be a sparse
connection tensor.

One way of accomplishing this is to have a randomly selected aubnaet of all possible intercon-
nections, as suggested by Kohonen [2|. The number of interconnectivns in this .;nethod needs only
be dircrtly proportional to the number of primary ncu.ons, inctead of (N*) when a'l possille
intercornections are used. If we teks M to be the average number of interconnections per primar;
neuron, then MN is the total number of interconnections as well as the number of “hidden” (sec-
ondary) neurons. The random sparsc interconiection model seerns to have some support from
neuiophysic.cgical evidence |2]. From a theoreticai point of view, though, it is rather difficult to
predict its behavior strictly on an ana'ytical basis. It should be pointed out that the term “ran-
daom interconnections” pertaina only to the “spatial” structure of the network; it says absolutely
nothing about w. ' possible existence or the absence of “chaotic’ temporal behavior of the net-
work. Another interesting idea in to allow the interconnections be made in & self-s'milar fashion,
making it cauvler for the system to corrclate events which can be transformed to one another by
a change in spatiul scales as well as by time renormalization. The interconnections are arranged
in » hicrarchica! manner with only ncarest neighbor interconneclions at the lowest level. Fach
kth order nearest neighbor interconnection cluster is fod to a “hidden neuron™ [3]. ‘This “hidde -
neuron” processes the information passed from the primary neuronn according to eqs. (?) and (3),
passcs the processed information back down to the primiry neurons, updates the connectivity
coofficient (which can be considered to be the state vector for the “hidden™ neuron), and also
passes the averaged spin value (order parameter) of the primary neurons to the next level, where
it undergoes another threshold operation to suppress noise. The situation now becomen identical
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to that at the previous level and the same clustering operation can be applied. The operation
which transforms any given level to the next level can be described in te;ms of the renormalization
group operator, R. Let Df,_'"—' be a connection tens..r between the hth level and h+1st level:

D:“-" = 26‘_‘__2_!, (26)
t€g

where v +t = (vy + t1,va + ta, - ‘wu + tx) represents a “near neighbor” of y for t € g, and 6, =
5u,60, -+ 6,,(6, = 1 for v =0 and O otherwise). The h+1st state vector T}+! is update ' as follows:

T.:‘,".'.!.L(."“) = (1- a..+|)7i','f.?.',(.") +or 4y x D"“‘""“"S",';(")S",';(") ce S:,‘;"‘). (27)

Vi'va
[ T

where ap4; = a*t!, and $" is defined recursively as

ShHr = w [2 < Sh .., >,.] = RS} . (28)
L Eg
< .- >, is the time average operator for the hth time scale, and s2 = 5,. In ecq. (27), we

have conveniently ignored the nonlinear saturation terms to simplify the equation. From the
construction of the renormalization group transformation (27) and (28), we notice that there
is ne longer a single short time scale. In fact, other things being equal, larger objects tend to
evolve more slowly in time, and tke self-similar scheme seems to capture this spatio-temporal scale
invariance quite nicely. The number of interconnections (and interneurons) in this scheme scales
as NinN, which again is much more favorable than ‘he N* scaling of the D=1 scheme. While
the renorinalization group scheme seems to have an vvershelming advantage iin areas where scale-
invariance play an important rol, it shares the disadvantage with the random connection scheme
in its opacity to analytical treatment. Perhaps the simplest scheme is the subspace projection
method in which the connection tensor Dy is defined as

N M ]

D:J‘lll"‘: = Z >: H 6“- il A ‘6“! -q-0 (20)

t 1q=-Mix)

It can be seen from (29) that only local interconncctions are allowed in this scheme. Using eq.
(4) for T,., the resulting expression for energy is

K- a {: Y (€ P, (30)

~1 r

where % is the projection operator for the €th subapace. Specifically,
”h"' - l’;(.’v'l.S-“- ' SN) o (()‘0 v -O,S, Ah""l My -,S', v 'S'QM'OlO L 0). (3‘)

The nuinber of interconnections scales as MN, the same as in the random interconnection acheme.
It is evident from eq. (30) that the enecgy ¥ becomes large whenever there is a large overlap
14



between § and a particular pattern vector £, and attains maximur. value when § = ¢, provided
that k is sufficiently large. One interesting way of looking at eq. (30) is that each term (¢!7!. P,$)*
in E can be considered to be the score of the local feature detector in the &#h subspace for the
candidate S, and the energy function & can be considered 1o he the total votes cast by all the
local feature detectors-on 5. This interpretation is particularly interesting from the point of view
of statistical inference schemes [5]. In fact, if we interpret § as a candidate hypothesis, then
E represents the total score registered for this particular hypothesis; and the hypothesis which
maximizes E is the most plausible one. Another interesting aspect of this particular scheme is its
relationship with cellular automata of radius M. Further discussion of this scheme will be given
later in this paper.

Although the preceding discussion has been focused on autoassociative memory, it can be
extended to the heteroussociative casc with slight wnodification. For the sake of clarity, let us
for the moment drop the connection tensor D and assume that the primary neurons are fully
interconnected. We will also ignore learning and simply take the correlation tensor T to be

m
Torvn vaqrewe = a 30 €0V gl Tml) om0 oo, (32)
r=1

where ¢/} = (¢l7,..., ¢) and (") = (n{™), ..., n{)) are two pattern vectors which represent, respe:-
tively, the input vector of dimension, N;, and the output vector of dimension, N,. Kquation (32) is
a straighiforward generalization of ¢q. (5) for D=1. Denoting the N;-dimensional input neuronal
state vector by § and the N,-dimensinrnal output neuronal state vector by U, the “interaction”
cnergy Ei. betweer the input and output states is

St = 9 Ty S S Ui gy o Uy

. y (33)
- o ):(_g“‘) S U)ok

If k is sufliciently large,then it is not hard Lo see that for § ~ ¢, where € i one of the stored input
pattern, K, is dominated by a single term

Eine ~ o€ S)*('l ‘.U)' o (M)

provided all other stored patterns are sufliciently different from ¢, “Sufliciently di'ferent” here

(e g .
Jmfi (S }*" e

)
Vor k. 8 and ¢! different from ¢ by 10%, ther ‘-‘-'N'.‘-) ~ 0.16 which i alrendy quite xmall. I

moeans

we assume that ¢ in statistically independent of £, then the expectation value of (67 €)" i
108N* 4 O(N), hence
(€ €1 /N" ~ 1omN 4, (30)
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which is a very small number for any reasonable value of N. Hence eq. (34) can easily be satisfied.
The equations analogons to eq. (17) arc

S'.("-H) =W [ﬂ(n)ljn) + L-‘ Ti,v;---v.w-u---wsn(':) ’ SI!T)UI(‘:ll T U'(':‘)]' (37)
Va. - Vadag e
and
Ui("+l, = “’ Z Tl'l"-vi.l'.vn-ol-"'l‘l Sl(l:l) e Sl(':)ul(':i)-' o U‘(‘:‘,]. (38)
1 VRGP,

Thus, if eq. (34) is irue, then eqs. (37) and (38) are approximately
S = W [g, (g S g )+ remider] )
U,-("H) =w [Z(.E ,5("))l(2 nlye-k-t gy remninder]. (40)

Clearly, S and U/ will quickly converge to ¢ and n respectively. Therefore, the heteroassociative
network that we have just niodeled has the desirable property that for any input sig.ial which is
sufficiently close to one of the stored pattern, ¢!"), not only will the input state converge to ¢!
quickly, but it will also elicit a response in the output state which converges rapidly to »!”). Such
a property is of course extremely important in pattern recognition problems where 5!”) could
represent the name for an equivalence class of which ¢!"") is one of the members.

An even more interesting application of the heteroassociative model is in problems ol drawing
inferences and retolving hypothesis from a mass of uncertain and incomnplete eviderce. The
standard approach is to use cither a Baycesinn inference network, where ad .oc scoring functions
and certainty factors for infcrence rules are supplied by domain experts. The trouble with this
appronch is that the joint probabilities provided by the experts are usually inconsittent and
inaccurate, and very complicated global relaxation nrocesses are typically required to satrike a
balance between conflicting evidence. la contrast, the reasoning process exhibited by humana
usually progresses in a narrowly {ocused incremental manner along prescribed pathways. And
the speed and ease with which our brainy perform low level cognitive and interpretive functions
scern Lo indicate that there are far beoter avays to appronch inference problems,  Unlike the
pattern recognition problem, where there exists a many-to-one correspondence between (¢!},
and p {7}, in the aet of pattern vectors which belong to the ith equivalence class. In inference

problems, the probabilistic inference rulea are typically of the frm:

Ir ¢, then n') with comlitional probability l'(r,“’!f“))

or ' with prabability — P(pt?)e'")

(4)

or 9" with probability I'(n"'|.‘_~'“').
Hence the correnpondence in of the one-to-many type.
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More generally, there may exist an equivalence class {¢!"); of evidence with the corresponding
set {n(P)); of alternative hypotheses. Anytime S is close to ¢ € {¢!");, Eine can be shown to be
dominated by

Eini=a( 5) 3 Wirn'™ - U)"*~aN¥ 3 Wipy(n'" - -v)-* (42)
PEM, PEM,
where {¢'7)|P € M} = {¢),, and statistical weights W) have been introduced to represent the
fact that the hypot'ieses, n!"), in general are not equally probable,

The relationst.ip between the statistical weight W,y and the probability can be gleaned from
the fact that the probabil'ty that U will converge to one of the hypotheses, ("}, is simply the
ratio of the nuraber of states within the attractor basin of p(”) to the total number of states
{= 2%), and that the basin always increases in size with the increase of W(p,. However, a precise
Jetermination of the functional dependency of basin size and W) is extremely difficult for all but
the simplest cases. Nevertheless, in most cases even a crude estimate of W ) based on subjective
probability (for example, simply equete W ) with the probability) is probably no worse than the
likelihood ratio produced by experts. Once a set of rules is constructed, we can allow those rules
to interact with one another, thus enabling complex infcrences to be made. A simple way to
couple the var. - inference rules together is to feed the output state directly to the input state
in order to form a recurrent inference network.

To understand this in dynamical teris, let 13 consider egs. (37) and (33) to be a nonlincar
mapping T betweer (5™, y!™) and (si"1!), yin+1);

, S(n) S(!l-.l)
1 (!_’.(")> = (L,(n-q 1))v (43)
with the initial condition §' = and U™ = 1/,. Note that we have assumed that () is large

and g = 0 for n:- 0. After interating the map (43) u sufficient number of times, the initial state
vector (1,U,) is mapped to an attractor which will be taken to be a fixed point (&, n):

) ) Q6

where 0 - n is defined to be the final output vector. Obviously both ¢ and o depend on 1 and U,

llence we can define the U,-dependent mapping between the input and output vectors:
0- Ky ol FUD, (45)

where Fy_ in the Uj-dependent map and F is a vector-valued function defined by Fy .

It should be pointed out that, in general, P is a function of enormous complexity and ir the
limit, 2+ oo, I' cannot be defined in termm of elementary functions because of the recursive
nuture of the definition. (Although 2V v oo and N+ oo mathematically means the same tiing,
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we nevertheless choose the former to emphasize the face that even for a modest N value of 10%,
2¥ can be considered to be infinite for all practial purposes). The complexity of F, we believe,
is the biggest difference between our approach and those using the so called “linear associative
mapping” where F is assumed to be a linear function of [ and independent of U,,.

Having dcfined F._,n', we now proceed to identify the output vector 0 as the next input. We will
also assume that U, is randomly generated for simplicity. Evidently, if we had more information,
we might be able to choose U, judiciously to obtain an optiinal result. There are other possibilities;
for example, U, can be taken to be ¢ from the previous calculation. The problem with the last
method is its deterministic nature. Therefore it is not readily amenable to statistical treatment.
Assuming that U, has uniform statistics, we can teke ¥y to be a stochastic mapping function
having the property that it will map ] to one of the admissible attractors compatible *ith J with
a probability which is directly proportional to the size of the basin of that particular attractor.
Renaming Fi;, as P, we can defire a stochastic recurrent inference network according to

L-("“) = pol(n) , L(O) =1 (46)

Equation (46) can be considered to be a Monte Carln version of the Bayesian network because
the probabilities associated with alternative hypotheses cannot be obtained in a single pass and
can only be cbtained by averaging over many passes. This, in fact, is reminiscent of the inference
process of Luman beings because of our rather lilnited short-term memory and our general inabil-
ity to switch rapidly between alternative hypotheses. It can even be argucd that under normal
circumstances it is unnecessary to access to all alternative hypotheses. The first couple of most
plausible hypotheses usually suffice. Equation (46) still nceds a termination condition whenever
the top of the net has been reached or when additional picces of evidence are required. The former
can be achieved by mapping the top level hypothesis to an action which could, for example, post
a meesage on the monitor screen. Similarly, in the latier case, the inference processing can be
interrupted momentarily by sending a message poscd as a question, Once a proper answer has
been received, the new piece of evidence can be introduced as input, and the inference propaga-
tion can be resumed. There is another possibility ¢f nontermination, namely circular reasoning.
Foctunately, since P in a stochastic operator, strictly periadic attractors are not poasible, and
sooner and later the system will break the cycle.

Equations (32), (33), (37) and (38) can be further generalized to Include multiple associntion.
For example, the interaction energy E,,. can be written as

Eune - X Tll.-- TN IS T TR l'..---m,"l.u. v '"I.lr.I "'].m. " '"‘J.m' v '"'.m,
1y iy,

T i.:(f‘l"l . (”)h(f.(‘” ._U,‘)h T ,,(ft'l'l . U,)*' ke '

(47)
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and the neural dynamics is governed by

m
U =W LZ R (R ) R (S A L (V4 e (YA v R
=1

5 = 25+1 Il

g e, (48)
J

where _{i_” = (i) el EL’:,Z) and y'"™ . i), -'-UJ(.;‘,),) are, respectively, the Pth pattern vector
of the jth layer and the nth state vector of the jth layer. Equations (47) and (48) reduce to
the autoassociative and heteroassociative cases by simply setting ¢ equal to 1 and 2, respectively.
Therefore, autcassocia’ 've model can be considered to have only a single layer of primary neurons;
and heteroasscciative, turn, has two layers, namely, an input layer and an output layer.

The lieteroassociative model of the Monte Carlo inferecnce network probably wili perform
satisfactorily when different inference rules can be assumed to be statistically and/or causally
independent. Indeed, the same assumption has been made by AI workers for A Bayesizn network
in order to make the probabilistic algorithm computationally managable. However, in the real
world the various inference rules are usually both statistically and causally related, and the
Markovian approximation is no longer valid. The multi-layered multi-associative dynamics can

be modelled by replacing the stochastic mapping (46) by its nonMarkovian counterpart:

(!_(n+l) . .1(") , !(n-—l) , "'_1_("““'3)) - PO(_L('I) . l(n—l) L, l(n—(-#-?)). (4(‘))

or

l(v.{-l) - .“(’-(H) ' ’(n—l) o !(n-rﬂ- ())' (50)

where F is a stochastic vector-valued function defined by the nonMarkovian map £ (eq. (49)).

In general, it is expected that the causal and statistical links grow weaker as we travel further
into the past, therefore ¢ need not be very large. Also N,, the number of primary necurons at
the jth layer, can be made to decreese rapidly with j if some data compression schem can be
used to reduce ' ¢ amount of evidence which needs to be retained for the jth layer. One possible
scheme is to progressively weed out weaker evidence. Faquation (5C) represents a kind of voting
convention in which the most likely hypothesis is d-zided not just by current members but also
by the voting of the prst members, although the votes cast by the past members tend to get
counted less.

It can be said that the influence exerted by past events is largely contextual. As such, it
allows contextual dependency to play an important role. VFor example, if the majority of the
past evidence and the inference rules invoked to deal with themn all have something to do with o
foothall game, then even if the presently acquired new evidenee seems to have nothing whatsoever
to Jo with football garae, it is o safe bet that the most likely new hypothesis still will have a lot to
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do with the football game. Hence, if we si.nply take the current event out of context, then most
probably, we will draw a wrong conclusion. Furthermorc, even if the current event indeed has
absolutely nothing to do with the foctball game, it is overwheliningly possible that it is merely a
distraction.

For example, imagine yoursclf in a football game witl: a friend during the half-time intermis-
sion, the topics of conversation can momentarily shift to national politics. If t}z .nference process
does not take into account the past conversation, then clearly it will be misled to explore regions
which are irrelevant and of no interest to the main event. Mathematically, because of the integral
relationship between the joint probability distribations:

Ut LU R DD DIETED TN 4T LD St (51)

1(v=1) f(n=2) In+3-0

where &, denotes the summation over all pocsibie vectors 1), given [(=2),...]("+3-8 the joint
distribution P(z("*V) ...["+3-8) tends to be more localized. Going back to the example of the
foothall game, if most of the already received or deduced evidence (cnce a hypothesis has been
selected, it automatically becomes deduced cvidence) terds to be weakly connected with the
football game so that they are biased by at least c amount, then the combined bias should be like
(1+ €)*, which, for £> L, would strongly support the hypothesis thai you are in a football game,
even though “football game™ has never been presented as direct svidence. Thus, a criminal can
be convicted by overwhelming circumstancial evidence for prccisely the same reason.

The advantage o1 having a strongly localized probability distribation is evident; having known
that you are very likely to be in a particular situation certainly allows you to “zoom in” and greatly
reduces the scarch space. In fact, we can call the nonMarkvian search the “context-directed beam
scarch” to paraphrase Al jargon. Another bonus of this approach is that hidden concepta z=n
he represented through a distributed correlatiun among a fair number of seemingly unrclated
events or ohjects. Note the similarity between “distributed concept™ and distributed memory.
The possibility of being nble to lift a high levei concept right out of multiple correlation is an
intriguing one,

It should be remarked here that there alreedy exists a technique in traditional Al to handle
nested contexts. The technique, which is in vogue in Al currently, has been dutbed “fran:e”
by Marvin Minsky [7' who has contributed many ideas about frames. The important point heve
i that frames make explicit the contextual dependence by having frames nested within frames.
Kach frame has many slots inside which either subfrumes can be placed, or else the slots are
tilled with default values. The frames have nice property inheritance rulee which allow default
propertics of a frarne to be passed down to all its snbfiames. Hencee, for eyample, a foothell game
frame will come with its own set of expectations “hich are inherited by all its instantations.
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The frame echnique recently has come under attack because of its inability to deal with
variability and exceptions and conflict resolution. For that matter, thec Monte Carlo inference net

can deal with exceptions aa1d conflicts in a very natural way. Imagine that the rule:
U A and B, then D with probability 1, (52)
has initially been imp'2mentec. If, at :: later rime a new rule is found, whicn states that
¥ A ard C and B | thes E with probability 1. (53)

Obviously these two rules are not coinpatibie However, it is quite likely that the condition
AA BAC was never encountered ... the previous tests. Hence the cntire region A A B gets mapped
to the basin of D. As soon as the regiou of exception 4 A BA C has been found and learned, a
new attractor E is created inside the original attracting basin for D. On a frame-based system,
conflicts of the type just mentioned can ounly be resolved by a major revision of the program.
Another way to ext»nd the capability of the Markovian inference net is by adding an internal
state vector Q to the inference rules as well as rules to update @’ The extended rules are of the
form:
If [ and @, ,then change ¢, and O,
Else If Qz , then change Q, to Q; and 0O,
: (54)
Else If Q,, then c.hange Q, to Q; and O,
The internal states, @, can be considered Lo be a set of fancy flags. Their introduction can
dras’ "-ally enhance the computational capability ~f the inference net. For example, they could
be used to keep track of which rules have becn used and how many times, etc. As a matter of

fact, cach rule now is as powerful as a finite state automaton. This can be seen from the following

generalization of eq. (43):
5._(") ‘5.("-0- 1)
T Q(u) . 9_(..1.1) ' (55)
;_)__(") U(" 1)

with the initial condition §' = 1, @V -: @, and U = U,

Following our previoua derivation, we can write

1 §
7mn ( Q ) (QI) ) (5“)
v, 0

where ¢ is the next state vector. Again, n U/ -dependent map can be defined

(o) (o) Lo o @) o
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where fy_ is the next output function and ), is the next state function. Therefore the extended
rule satisfies the definition of a finite state machine. Of course, since (55) can implement a large
set of extended rales at the same time, what we have here is a stochastic inference network whose
nodes are themselves finite state automata.

Even more power can be gained by allowing the extended rule finite automata to interact
through a separate associative memory message list (or “blackboard™), thus turning the systern
into a universal computer. The advantage of having a message list or a blackboard in the inference
net is that it will enable the net to deal with multiple evidence (or multiple input). Typically
at any time during the reference process, the message list will contain both initial and deduced
evidence, as well as additional new external evidence which has just been enternd, and the rules
can be considered to be active agents which can enter and retrieve messages.

An interesting metaphor is viewing the inference engine as a master craftsman and the message
list as the master craftsman’s work bench on which unfinished materials (initial avidence), parte
and products in various stages of completion (deduced evidence) are sitting. What the master
craftsman doec is pick up something from the workbench, find the proper too! to apply, work
or. it, and change tools as necessary until he is finished with that subtask. Then he puts the
partially finished product back on the bench and proceeds to pick up another object from the
bench. The message list is an autoassociative storage with inlermediate time constant. Its pointer
is usually at the attractor which has just been entered. If the pointer happens to be in the basin of
attraction of the input vector of one of the inference rules (meaning that a “best mat -h” is found
belween the new message and the condition part of that particular rule), then that particular
rule will be triggered and the message processed. The processed information is then dumped
back into the message list to be processed by other rules. In order to prevent the same message
from being picked up by the same rule more than once, ¢ ne can either erase the message from
the autvassuciative store by writing in the negative image of that message, or one can change the
internai state of the rule to keep track of those messages which have been processed by a given
rule,

Perhaps it is worthwhile at this point to note the strong similarity between our workvench
metaphor and the classifier systein of Holland |7| as well as the immune system of Farmer, Packard
and Perelson [9]. In fact, in addition to the more superficial similarities between our inference
rules and Holland’s condition-action pairs as well as the employment of a message list in both
cascs, there is a much deeper correspondence. By the very nature of the associative learning
algorithni, the inference rules in our system constantly evolve on the long time scale. Rules which
.- irequently applied gain strength, thereby increasing their respective attractor basins which in
rurn makes them even more useful. Thiy, of course, is just the learning instability we have alluded
10 carlier and nonuncar termy need to be added to prevent rule condensation. Weaker rules will
gradually lose their strength because of the forgetting effec!; most will ultimately disappear. New

22



rules can either be imported from the outside, or they can be created internally. The latter is
made possible by (a) the stochastic nature of the rules, and (b) the nonlinearity of the learning
subsystem. The stoch&st'icity of the rules is similar to muiation because it allows the mapping to
differ slightly each time the same rule is applied. Consequently the rules can perform a random
walk in the rule space (the zttractors and attractor basins evolve by executing a random walk).
Needless to say, if a rule has proved its worth, then it tends either not to wander very far from
the winning formula, or not at all!

Potentially a much faster way of evolution is through the nonlinear effect of the learning
process. Although nonlinear evolution of a complex system is in general not well-understood, it
is nevertheless useful here t~ make a few speculatiors: first of all, if sparse local interconnections
similar to those described by eqs. (27), (28) or eq. (30) are used for learning, then the rules
in general can be thought of as tightly coupled collections of local feature operators. Since the
local feature operators usually have the tightest bond, it follows that they are usually evolved
as single units. Hence, nonlinear interactions ot rules usually lead to rearrangement of feature
operators instead of a wholesale transformation of the latter, provided the nonlinearity is not too
strong. From the energy point of view, it can be said that the binding energy of the individaal
feature operaior is too strong to be perturbed by weak interaction. Here again, the analogy
of chemical reactions and immune system is relevant. If the interaction is even weaker, then
only we.k links binding feature operators can be Lroken, leading to a genetic operation which is
known as “cross-over”. Now if we can difterentiate between strong bond and moderately strong
bond, then it is not unreasonable to believe that there also exists weaker bonds among inference
rules. In fact, this has already been alluded to when we address the problem of contextual
dependence and long range correlation. among rules. This leads to our secc.'l speculation, that
there exists a hierarchical structure of rules, with loca) features being the atoms, larger subrule
units being the tightly bonded molecules, rules themszlves being the molecules of molecules, and
contextual and/or causal collections of rules, or tasks, being the macromolecules, and so on, and so
forth. In other words, there exists a hierarchy of knowledgc representations with varying degrees
of cohesiveness and complexity in approximately mutually exclusive fashion. Whereas strong
nonlinear interactions can result in drastic genetic surgery of the rules, weaker interactions tend
to cause a slow evolution of the hierarchical structure itsell. Once again, higher order multiple
associations cause “level hopping”, allowing the evolution to be carried out at the “meta” level.
The third speculation is that there may cxist a critical transition point which is a fixed point of
some renormalization group, beyond which long range order can develop across all complexity
scalcs and across all levels. In statistical mechanics and in nonlinear dynamics, the renormalization

group equation is usually expressed mathematically as

R” = SRS, (58)
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where R is the renor:nalization semi-group transformation defined in terms of block averaging (in
statistical mechanics), p iv a positive integer (usually 2), and S is a scaling group transformation
with group parameter A. The fixed points for eq. (58) correspond to nontrivial solutions of eq.
(58) for some ), the latter being the eigenvalue of the renormalization group equation, (58). In
our case, such an equa.fion is clearly not very meaningful since it implies that there exists a fixed
scaling relationship across all levels which simply rannot be true for systems of this complexity.
Instead the situation is probably slightly more akin to that of the random fractal (Mandelbrot
[7]) where the relationship between different levels can only be described in a siatiztical sense. Of
course “random” is probably not a good description of the situation either. A better description
is that therc is a synergistic relationship across all levels. At the individuai level, the evolution
of the rules would all seem to be random, but when the system is examined as a whole, over
a sufficiently loug period of time, we find that the truly random part of the evolution tends to
average out rather quickly. On the other hand, the coherent part tends to grow exponentially
(algebraically at the fixed point) oct of the noise because of the existence of coherent structure
at higher leveis, which in turn triggers the evolution of higher level rules.

The discussion of these speculations is a bit vague. However, that does not mean such
synergistic behavior between different levels cannoi be found in physical systems. We wish to
point our that jusi such behavior is present in plasma physics (among many other examples).
Consider the following situation: an electric field is applied to set up a relative drift between
electrons and ions in a uniforin plasma. After the electric fieid is turned off, the macrozcopic
drift will cause the plasma to develop small scale (microscopic) instabilitics, meaning thai the
coherent part of the ever present noise will get amplified (the coherent part is defined to be a
superposition of unstable linear eigenfunctions). The nonlinear evolution of the microinstabilities
in turn induces a “quasilinear” evolution of the 1nacroscopic distributions. The main difference
between the plasma physics example and the neural system is that in the former, there are only
two levels, microscopic and 1nacroscopic: whereas in neural net the:e is a hierarchy of levels.

Another way of looking at multiple associative memory is to consider it to be either an
a.utoassociator or heteroussociator with multiple conjunctive/disjuictive switches. Take triple

association, for example. We can write

s w [Z SR A S U AL ”h]' o
) N B - - B -
U.'(" N w [i ".(".)(f“') ) S(n))h("(") . .[_I(u))lu (S_“‘, '_.V_)h] . (00)
I |

It is not hard to see that eqs. (59) and (60) are the same as the heteroassociative eqe. (37)
and (38) provided that all ¢(") ave the same (in which case the extra factor (¢ - V)** in {59) and
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(60) simply does not matter). To make (59) and (60) more interesting, we define the equivalence
classes

Cq = {(ﬁ(r) ) Q(P))IPEI.,} , ¢g=1,2,---M (61)

where I,’s are disjoint sets of integers. By choosing a different ¢(9 for each equivalence class, C,,
it is possible to switch from one equivalence class to another one just by changing V, since for
sufficiently large Kj, (¢(¢) - V)¥2 is a sharp function of ¢(? . V. For M < N, it may even be possible
to pick ¢(9’s which are mutually orthogonal.

The multiple switch idea is related to the subject of frames. Indeed, it is straightforward to
construct a hierarchy of nested equivalence classes using the above mentioned procedure. Default
values and property inheritance come naturally in this scheme. However, there is no reason
to restrict oneself to the hierarchical representation favored by frame enthusiasm, because most
knowledge does not lend itself to strict hierarchical representation.

Attentional feedback gain control is unother area where the switch paradigm is useful. The
ability to focus, or to “pay attention” to some particular feature of the info. mation being processed
(be it e:.ternal input or internally generated) to the exclusion of all other information, is an
important attribute of human intelligent endeavor. Through focusing, we can filter out irrelevant
or distracting factors. This enables us to discover connections which would have been obscured
or masked by “noise”. Deliberately filtering out certain characteristic features also allow' the
formation of analogical reasoning and concept generalization.

Spatio-temporal memory is another important aspect of human information processing activ-
ity which can be implemented by multiple associative memory. Perhaps the simplest method is
to use the heteroassociative version of eq. (50)

l("+” = E(l‘"))- (62)

However, the heteroassociativc network cannot deal with the situations where the same spatial
pattern 4 may be followed by more than one pattern, e.g., B,, B, ... etc. In fact, if a given s_ \tio-
temporal sequence contains one to many maps in many places, then because of the stochastic
nature of the ussociation, the recalled sequence can get all tangled up. If there are more than one
spatio-temporal sequences having this preperty, then the recalled memory will jump from one
spatio-temporal sequence to another in a random manner.

An obvious way tc remedy the situation is to use the full multiple associative version, eq. (48),
directly with sufficiently large ¢ to minimize multiple mapping. The problem with this approach
is that in the “real world”, time Is continuous, and the rate at which events unfold in time may
differ fron1 one instant to the next and on successive trial. For small ¢, such variability can be
dealt with automatically because consecutive patterns tend to be close to each other. For large
¢, however, the same spatio-tcmporal act played at two distinctly different rates will not match
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vrell with each other over the time interval specificd by ¢. Clearly some sort of time-warping
i: needed. The other alternative is to encode spatio-iemporal acts at rll possible rate changes
vrithin a certain range. Again this will work for srnall £. For large ¢, ihe possible combinations
v'ill simply explode (combinatorial explosion).

To see how dynamical time-warpiag can be implemented, let us examine the two-step version
of eq. (50)

!X(l) =£(£(0) , &(-1) , l(-ﬂ . x(ﬂ--l))' (63)
X xo oy, x(=0 L x(3-0 ., x(3-0, (64)

E quation (64) corresponds to a shift operation. To re.all a spatio-temporal pattern, we first input
JE o x(0) ple=a) | y(=1) L g(0) _, yi(3-0) (65)

where [(©, 1V, ... 11¢-1) need not be complete nor eccurate. After the initial condition is loaded
ir to the network, we take turn executing eqs. (63) and (64) and output the successive values of
2'". So far there is no difference between this procedure and eq. (50). To allow time-warping, at
a 1y particular time step, we can either suspend the shift opcration, (64), to slow down the tempo
a1d do nothing, or execute the shift operation twice to accelerate the tempo. In order to be able
t« perform the last option, we will need an intermediate value of X!*). This can be accomplished
b simply using th previous value of X!! for the intermediate X(*). A total time-warping factor of
4 or more can be achieved using this procedure. The decision of which onc of the three alternative
o crations should be performed ut each time step can be made by using a three-way switch (cqs.
(¢0) and (61)). For spatio-temporal patiern or speech recognition problems, the 3-way switch
¢i.n be controlled by a low ¢ (shert time) spatio-temporal pattern matcher which previews the
i» put and decides which of the three alternatives constitutes the best match. Note that the low
¢ temporal pattern matcher, being inferior to the high ¢ one, might make a decision error and
d cide to pick the “do nothing” option at a particular time step. This is not a problem since,
a the next time step, a sufliciently large discrepancy will show up that the pavvern mateher will
n ake the right choice.
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5. Learning Statistical Invariants

Even though experts differ in their estimates of the information capacity of a human being, it is
generally agreed (Kohonen) (2] that the human brain just does not have enough memory capacity
to hold the information which floods us everyday. The usual argument is that information can
only be transferred into long term memory under attentional control. However, even if only one
configurational sensory pattern were stored every ten seconds or so, the estimated human mem: ry
capacity would still be exceeded rather quickly.

This has led us to ask the following question: can anything useful be learned after memory
capacity of the neural network is completely saturated? For simplicity, let us consider the simple
spatial memory model described by the learning rule eq. (3) with the additional assumption that
DY = 1. Equation (3) can be readily integrated to give

T, =a {":(1 — a)PiglnPgin-T). . gin-F), (66)
P=1

Unlike eq. (4), however, S'") cannot be approximated by the input patterns, ¢, because,
except for early time, the state vectors $!”), to which the neural dynamics converge, depend on
the patterns which the system has already lcarned. If we model noise by independent random
variables, then for odd k, according to eq. (4), noise tends to get washed out because of its randem
nature. Thus neural learning has the effect of noise suppression; i.e,, it cannot learn mearingless
patterns! Furthermore, once certain patiern attractors are formed, similar input pa‘terns usually
get attracted to the respective attractors rather quickly. Tlence the formation of new pattern
attractors is inhibited. The location as well as the size of the attructors may drift slowly because
of the transient effects and becwvse of the input component, gI!" (sce eq. (17)), which may alter
the dynamics somewhat. Such slow evolution should allow the system to adapt to the slowly
changing environment adiebatically.

When the input pattern is sufliciently different from stored patterns, the input either may not
converge to one of the stored patierna, or even if it does, it usually does so in a very deliberate
manner. In the former case, it may get attracted to a spurious attractor which is probably a
“recombinant™ attractor (i.c., an attractor which has pieces of other attracting patterns), or if
the input has been on for sufliciently long time and/or appears frequent enough, then a new
attractor is formed. Whereas in the latter case, the long transient may be suflicient for the
learning subaystem to cither significantly alter the attractor basin or to ereate a new attractor
nltogether.

Given the highly nonlinear and varying nature of the evolution of the atate vector s™, it
would seem that no conclusion could be drawn regarding the characteristies of 78, .. However,
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it can be argued that $*) always mirrors the input patterns in one way or another, hence for the
purpose of illustration, we will simply replace §" in (66) by ¢!":

i, =a Z(l )PP L glr, (67)
P=0

For large n and small a, we can replace the discrete sum by an integral,

T.u (t) = a/: dre_r“.-')fvl(f)ev: (T) e fvl(r)l (08)

where n — ¢ and a — I'. Invoking the “reasonable” assumption that the time average can be
approximated by ensembhle average, we have

T, (t) = a-/: dre™*=") < £, ()€ (1) - Eua(7) >y (69)

where ‘he time-dependent ensemble average is taken over one statistical ensemble accumulated
during time t4+ A > r > t — A with 1 << A << 1, Thus 7, can be physically interpreted as
time-weighted correlation functions.

Perhaps what differentiates highly saturated memory patterns from sparsely stored patterns
is that, whercas the energy landscape of the latter consists strictly of isolated peaks, the former
usually consists of peaks merged to furm ridges. To sce this, let us consider a trajectory, (1),
which we take to be

g(t) = coaﬂ(t)g(') + ainﬂ(t)_{(’), (70)
where 0(¢y) = 0,6(¢ty) = §, and 6 - 01 - 5(¢; - tu). The state vector can be similarly expressed:
S = (coap€'') 4 wing'?)cosd + aingg!?, (11)

where §.1¢ | ¢V, The form of ¢ and § is dictated by the requirement that §. § - E€-¢~N
The contribution of the trajectory to I is

ak-al [ e 5o v
_ u{/a"d"’”"*”l"”-‘("(') sﬁ)lk}" " (72)

- f(d)e Tteoak

where t ~ ¢, ~ t; and f(¢4) in very nearly constant when 5 ~ ¢ ~ 0 and drops to zero rapidly
whenever ¢ lies outside of (0,7). Note also the sharp decline when § starts to move out of the

plane of ¢, €,. The trajectory also makes a contribution to 7., ., which Is of the form:

ATy vy o BNV e gy DDy 26D gD, (74)
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where ¢ = (¢!, &V ,--€}) etc.

The preceding example shows that a dense distribution of patterns can change the dimension
of the attractor from zero to finite dimension (in an approximate sense, if one can consider 2¥ 1o
be infiaite). The merging of simple attractors to form an invariant attractor manifold certainly
results in the disappearauce of the identity of the individual patterns. Nevertheless, this does not
imply thet the resulting attractors are any less useful. On the contrary, any piece of information
which cannot survive the averaging process should be considered irrelevant, and the elimination of
irrelevent information contributes immensely to the effective utilization of the memory storage.
This becomes clear when one realizes that the expression (73) for AT, contains fewer than 2*
coefiicients, even though it is obtained by summing over a very large number (of order N) of
patterns!

Since the invariant attractor manifold summarizes the characteristics of a whole class of spatial
(or sputio-temporal) patterns, they can no longer be said to describe individual patterns but must
be considered as rules. In fact, it is entirely possible for the saturation learning algorithm to learn
laws of physics empirically. The abiiity to learn common sense (naive) physics empirically could

potentially be of some benefit to research in cognitive prycholcgy.

6. Numerical Studies of the Autoassoclative Map

As a simple demonstration of the capabilities of the autoassociative scheme, we have developed a
small computer code which implements eqs. (2)-(4) with D =a =1 on a CRAY XMP, a machine
whicl performs logical operations at the rate of §x10'" bits per second. An initial pattern set, ¢7),
was chosen and many state vectors, §I*), were iterated through the algorithm, always converging
to some pattern. A fraction of the initial state vectors converged to members of the pattern
sct. The dependence of this fraction upon the power (k in ¢q. 5) and upon the number, I, of
peiterns in the pattern set was calculated for several different k and I. Alan the average number

of iterations required for convergence was calculated.
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7. Dependence on Exponent and Siz¢ of Pattern Set

One qualitative result is that the number of iterations needed to converge decreases with increasing
cxponent; however, the number of attractors not in the initial set of patterns increases with
increasing exponent. /Another qualitative result is that the number of iterations required to
converge generally increases with the number of initial patterns.

Specifically, an initial pattern set containing I elements was chosen. Each pattern had 64
randomly chosen bits. Eighteen pattern sets were used with 2 < I < 612. For each set, 100,000
random initial states were iterated to convergence. If the state converged to a pattern not in
the initial set, we called the converged pattern a trap. The following quantities vrere calculated:
average number of iterations to convergence, number of traps, and fraction of the states which
converge to a trap. The results are shown in Figs. 1 and 2 for four different values of the exponent.

In Fig. 1, the average number of iterations to convergence is seen to decrease with increasing
exponent and it is observed to increase with increasing pattern number. In Fig. 2, the number
of traps is observed to increase with increasing pattern number and with increasing exponent.

The ability to associate each input state with a unique nttractor is closely reluted to the
concept of memory. If we define the memory capacity of u given map to be the n'amber of initial
patterns stored for which 90% of the input states are correctly identified with the stored pattern
fror. which the state was generated by changing N bits, then we find that memory capaecity
depends strongly an the power, P, of the energy function and on the initial Hatnming distance
between the pattern and the initial state. In Fig. 3a, the fraction of input states which converge
correctly is plotted as a function of the number of randomly chosen stored patterns. The curve
for P ~ 2 has a memory capacity of ten; the curve for I’ = 3 has a memory cajpacity of ebout
120; and the curve for P = 5 has a memory capacity greater than 10,000. The 2048 randomly
chosen initial states were each exactly 2 Hamming units away from an initial patiern,

For states which are cxactly 12 Hamming distances away from one of the stored patterns,
we sce in Fig. 3b that the memory capacities decrease to 5 for P = 2, 100 for P = 3, and
about 2000 for P - 5. One can conclude from these calculatious that the memory capacity
increases considerably with increasing P. One can also conclude that the basin of attraction for
each wttractor in quite large.

If the deflnition of memory capacity is modifled to oniy require that the initial state converge
to the nearest pattern inatead of the pattern from which the state was generated by changing N
bits, then we see in Fig. 3¢ that memory capacity increases. Here for an Initial Hamming distance
of 20 from one of the patterns, the newly defined memory capacity becomes 2 for I 2, 40 for
o3, 1200 for P 5 and greater than 2000 for I 9,

It in possible that a polynomial map might combine the advantages of the nonomial maps
studied here. For example, a linear combination of P 3 and P 17 might provide rapid
convergence and fewer traps,
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Limit cycles with periods of up to 6 iterations were observed. It is also interesting that no
traps were observed for I = 2.

8. Dcpendence on Initial Hamming Distance

The choice of random- initial states simulates a choice of initial states which are ~ 32 Hamming
distances away from elements in the initial pattern set. Studies which examine the convergence
rate as a function of the initial Hamming distance indicate more rapid convergence and fewer
traps for smaller initial Hamming distance.

9. Dependence on Mask Overlap

The above studies took the dot product of a state vector with a pattern vector and raised the dot
product to a power to obtain a weight. All bits contribute to this weight so it is of some interest
to study the effect of “masking” the dot product. We define “masking” of a dot product to be
taking the dot product of a subset of the pattern bits. Certainly no bit should be omitted in the
masking algorithm but the amount of overlap of adjacent masks can be varied. It was fo:nd that
for these random bit pattern sets no mask overlap was required for convergence of states which
arc onc Hamming unit away from an element in the initial pattern set.

10. Dizcusslon

We have presented in this paper some ideas about how to mimick the evolution of an intelligent
system. Our approach is based on a generalization of the correlation matrix formalisin to higher
order. From the point of view of theoretical physics and nonlincar dynamics, our neural network
can be considered to be a system of spins interacting with one another through a modifiable high
order nonlinearity. The cvolution of the nonlinear interaction iy, in turn, governed autonomously
by another sct of nonlincar dynamical equations which opcrates on a much longer time scale,
In a way one can speak of a dynamical systern whose cquations of motion are slowly changed
by another dynamical system in response to changes in the environment, thus one can consider
the second level equations to be the “equations of equations”. Although simple Hebbian-like
learning is usually invoked by neural modellers to allow conaection (correlation) matrices to be
modified, the equations used by these authors are typically simple linear equations, the nijor
exception being the master-net/slave-net model of Lapedes and Farber (3], to whose work our
coupled nonlinear neural network bears atrong resemblance.

Multiple associntive memory (MAM) has received very little attention among neural
researchere, although it seems obvious that MAM should play a major role in the higher level
intellectual activities of human beings. The chiel reason for this lnck of attention appears to be
that there does not exist a straightforward way of implementing MAM within the correlation mn-
trix formalism. We have demonstrated that a Bayesian-like inference act. can be formulated using



multiple ascociative architecture. It is further shown that universal computing is possible with
the addition of a common associative memory storage. The ability to perform arbitrary finite
recursive computation is very important since most inference nets studied by Al workers do not
have such power, sevcrely limiting their usefulness. Of course mmost standard computers theoreti-
cally have this capability given a large enough disk. However, they have to be programmed with
a specific task in mind. Perhaps even more important than bheing able to perform inference tasks
are (a) our neural network potentially can learn to extract environmental invariants directly from
observation through what we call “saturation learning” technique, and (b) the nonlinear learning
algorithm affords a novel way to evolve the rules in a genetic manner. The latter is made possible
by the fact that the rules in general will interact with one another through the nonlinearity in the
learning dynamics in a way reminiscent «f the chemical interaction of molecules in the immune
system. Specifically, since rules are represented in the neura! i;etwork ac a strings of 1's und -1's,
they can be thought of as molecules. Within any given rule molecule, there may he subuniis
which are much more tightly bonded, the likeiihood of their existence increases as the rule be-
comes more and more complex. This means that when rules interact nonlinearly, as long as the
intcration energy is smaller than the binding energies of the subrules, they tend to recombine in
a way that leaves the more tightly bonded subunits intact.

The idea of recombinant rules (horrowing a terminology from genetic engineering) is an attrac-
tive one, because it allows an evolution process which is nnot completely random; i.e., frequently
used (and thercfore highly successful) st.bunits are preserved and potentially unprofitable paths
arc climinated. To be sure, somne of the potentially profitable directions may also be left unex-
plored. Iowever, they could only be found by an exhaustive search which leads to combinatorial
explosion and is therefore unacceptable. Similar consideration also applied to super rules (i.c., a
conceptuunlly, contextually, or functionally connected sequences of rules), and to super-super rules,
ctc. Thus the entire hierarchy of rules and rule chunks are genetically evolved simultancously.

The genetic evolution we have discusacd so far is of the “bottom-up” type, namely, the genetic
cvolution of the lower levels can affect that of the higher levels but not vise versa. Therefore the
evolution path still would seem to be random and without direction. Fortunately the same
multiple asaociative architecture which provides the “bottom-up” genetic evolution also provides
a natural “top-down” or goal-dirceted evolutionary pathway. This can be seen from the fact
that the nonlinear interaction coeflicients, i.e.; the lawvs of physics which govern the interactions
of the rules, are themselves evolving in time (in response to the changing domain). The slow
evolution of the lawas in turn can change the direction and the rate of genetic mutations to favor
certuin evolution paths. This bi-directional evolution is conjectured to reach criticality when the
evolution at all levels become aynchronized, ie,, Liey evolve as one. Fven though microscopically
the evolution processes would still lock random, when taken ws a whole, the system would seem
to evolve coherently, as if with purpose,
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The preceding discussion is speculative. However, in view of considerable evidence concerning
the critical phenomena of complex physical system, this is at least an educated speculation.
So far our efforts to simulate the network on a computer have been mostly concentrated on
autoassociative memory, where we have demonstrated quite conclusively that the higher order
correlation scheme is s'uperior to the correlation matrix scheme in memory capacity and speed of
convergence. We have also demonstrated the viability of using sparse connection (nonoverlapping
masks) for pattern recall. Although not presented in this paper, we have also done limited
gimulation runs on heteroassociative memory and multi-associative spatio-temporal memory. In
the former case, we have shown that the heteroassociative pattern recognizer can identify shifted
one dimensional patterns without error. In the latter we have demonstrated the ability of the
spatio-temporal associative storage to storc and retrieve the entire set of characters of the English
alphabet (in the form of 5 x 7 black on white patterns) sequentially and in the correct order.
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Fig. 1.

Fig. 2.

Fig. 3a.

Fig. 3b.
Fig. 3c.

Figure Captions

The average number of iterations required for a state to converge to a pattern in the initial
pattern set. For P.= 2 and the number of initial patterns greater than 32, no state converged
in the initial set and the number 31 plotied merely indicates the lack of convergence. As the
power, P, in the energy exponent increases, the average number of iteation decreases. 100,000
random initial states were processed for each initial pattern set.

States can converge to patterns outside the initial pattern set. We call these converged states
traps and plot the number of traps as a function of the number of initial patterns for tfour
different values of the power, P, in the energy exponent. Again, 100,000 random initial states
are introduced for each initial pattern set.

When 2048 states are processed, each state being exactly 2 Hamming distances away from
a stored pattern, a fraction of the states converge to that paitern. As the number of initial
patterns increases, the memory capacity decreases abruptly. The P = 2 curve drops decreases
first; the P = 3 curve drops in the neighborhood of 2000 patterns; and the P = 5 curve is still
near 1.0 for 10000 patterns.

The same as 4a except the initial IlTamming distance is 12,

The same as 4a except 1.) the initial lamming distance is 20 and 2.) the statc is ony
required to converge to some pattern in the initial pattern set (not necessarily the pattern
used to create it by modifying 20 of its bits). A P = 9 curve is alsv included.
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FRACTION (HD=2)
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FRACTION (HD=12)

FRACTION CONVERGED CORRECTLY
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